ISIT 2000, Sorrento, Italy, june 25-30,2000

A Comparisen of two schemes for generating DC-free RLL Sequences

Kees A. Schouhamer Immink
Institute for Experimental
Mathematics, Ellernstrasse 29,
45326 Essen, Germany.
immink@exp-math.uni-essen.de

Abstract — We will discuss the generation of dc-
free runlength-limited (DCRLL) sequences. We pro-
pose to employ standard RLL codes, where dc-control
is effectuated by multiplexing the source data or the
encoded data with dc-control bits. The dc-control bits
offer the degree of freedom required to shape to spec-
trum. It will be shown that a new technique, called
parity preserving assignment, will offer great benefits over
other constructions.

I. INTRODUCTION

The design of dc-free runlength-limited (DCRLL) codes
can, at least in principle, be systematically accomplished
by the many design techniques published [1]. Unfortu-
nately, the design of a DCRLL code with a rate close
to the Shannon capacity of the constrained channel, is
severely hampered by the large number of states of the
finite-state machine which models the channel constraints
at hand. The large number of states of the underlying
FSM, can, at least in principle, be handled by buying a
larger computer, but the insight required is too easily lost.
Essentially, there are two systematic design approaches
that emerged in the literature.

The first method uses a standard method, such as the
ACH algorithm to design an RLL code. In the final stage
of the ACH algorithm we end up with a graph with the
property that from any state of the graph there are at
least 2™ (m is assumed to be the source word length)
outgoing edges. These surplus edges are used as alterna-
tive codewords that can be used for dc-control. The rate
8/16, (2,10) EFMPlus code is an example of a DCRLL
code used in practice (DVD) that was designed according
to these guidelines [1].

In the second method, a given, state-of-the-art, RLL
code, is used to generate RLL sequences. The sequences
generated under the coding rules of said code are mul-
tiplexed with dc-control bits for minimizing the low-
frequency components. The user data or alternatively
the encoded data are partitioned into segments of v bits.
Between two consecutive v-bit segments 8 dc-control bits
are inserted, and the 8 dc-control bits, in turn, are chosen
to minimize the low-frequency components.

II. CODES WITH PARITY PRESERVING WORD
ASSIGNMENT

In order to make it possible to efficiently control the dc-
content in the source date level mode, we have made the
assignment between source words and codewords in such

Wang Yong Hong Wilson
Data Storage Institute, 5
Engineering Drive 1, Singapore
117608, dsiyhw@dsi.nus.edu.sg

Table 1: Variable-length synchronous rate 2/3, (1,00) code
with parity preserving assignment.

Data Code
00 «~ — 000

01 «~ — 010

10 «~ — 100
1100 + — 001010
1101 +« — 001000
1110 +«+ — 101010
1111 «+ — 101000

a way that the parity of both source word and its assigned
codeword are the same. The parity, P, of an n-bit word
(#1,...,2n), i € {0,1}, (either source or codewords) is
defined by ‘

Pzixi mod 2.

t=1

In other words, if the source word has an even (or odd)
number of ’one’s then its channel representation also has
an even (or odd) number of 'one’s. A code with a par-
ity preserving assignment has the virtue that when it is
used in conjunction with dc-control bits at data level that
setting an even (or odd) number of ’one’s at data level
will result in an even (or odd) number of ’one’s at code
level. This leads, as we will demonstrate, to an efficient
dc-control. -

The variable length rate 2/3, (1, 00) code shown in Ta-
ble 1, is an example of a code with the parity preserving
property. It can easily be verified that indeed the as-
signment is parity preserving. In the presentation, we
will show the difference in performance between various
DCRLL codes:

References

[1] K.A.S. Immink, Codes for Mass Data Storage Sys-
tems, Shannon Foundation Publishers, Eindhoven,
The Netherlands, 1999.

352

0-7803-5857-0/00/$10.00 ©2000 IEEE.

